Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Microb Biotechnol ; 17(3): e14448, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498302

RESUMO

Pseudomonas putida is a soil bacterium with multiple uses in fermentation and biotransformation processes. P. putida ATCC 12633 can biotransform benzaldehyde and other aldehydes into valuable α-hydroxyketones, such as (S)-2-hydroxypropiophenone. However, poor tolerance of this strain toward chaotropic aldehydes hampers efficient biotransformation processes. To circumvent this problem, we expressed the gene encoding the global regulator PprI from Deinococcus radiodurans, an inducer of pleiotropic proteins promoting DNA repair, in P. putida. Fine-tuned gene expression was achieved using an expression plasmid under the control of the LacIQ /Ptrc system, and the cross-protective role of PprI was assessed against multiple stress treatments. Moreover, the stress-tolerant P. putida strain was tested for 2-hydroxypropiophenone production using whole resting cells in the presence of relevant aldehyde substrates. P. putida cells harbouring the global transcriptional regulator exhibited high tolerance toward benzaldehyde, acetaldehyde, ethanol, butanol, NaCl, H2 O2 and thermal stress, thereby reflecting the multistress protection profile conferred by PprI. Additionally, the engineered cells converted aldehydes to 2-hydroxypropiophenone more efficiently than the parental P. putida strain. 2-Hydroxypropiophenone concentration reached 1.6 g L-1 upon a 3-h incubation under optimized conditions, at a cell concentration of 0.033 g wet cell weight mL-1 in the presence of 20 mM benzaldehyde and 600 mM acetaldehyde. Product yield and productivity were 0.74 g 2-HPP g-1 benzaldehyde and 0.089 g 2-HPP g cell dry weight-1 h-1 , respectively, 35% higher than the control experiments. Taken together, these results demonstrate that introducing PprI from D. radiodurans enhances chaotrope tolerance and 2-HPP production in P. putida ATCC 12633.


Assuntos
Deinococcus , Hidroxipropiofenona , Pseudomonas putida , Benzaldeídos/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Deinococcus/genética , Acetaldeído/metabolismo
2.
Sci Rep ; 14(1): 406, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172216

RESUMO

Avicennia marina is a salt-tolerance plant with high antioxidant and antibacterial potential. In the present work, a gene encoding MnSOD from Avicennia marina (AmSOD2) was cloned in the expression vectors pET28a. The resulting constructs were transformed into Escherichia coli strains Rosetta (DE3). Following the induction with Isopropyl ß-D-1-thiogalactopyranoside, the protein His-AmSOD2 was expressed but dominantly found in the insoluble fraction of strain R-AmSOD2. Due to detection of mitochondrial transit peptide in the amino acid sequence of AmSOD2, the transit peptide was removed and AmSOD2 without transit peptide (tAmSOD2) was expressed in E. coli and dominantly found in the soluble fraction. The enzyme His-tAmSOD2 exhibited a molecular mass of 116 kDa in native condition. Nevertheless, in reducing conditions the molecular mass is 28 kDa indicating the enzyme His-tAmSOD2 is a tetramer protein. As shown by ICP analysis there is one mole Mn2+ in each monomer. The Pure His-tAmSOD2 was highly active in vitro, however the activity was almost three-fold lower than His-AmSOD1. Whereas the high stability of the recombinant His-AmSOD1was previously shown after incubation in a broad range pH and high temperature, His-tAmSOD2 was stable up to 50 °C and pH 6 for 1 h. The gene expression analysis showed that the gene encoding AmSOD2 is expressed in root, shoot and leaves of A. marina. In addition, the results show that the expression in the leaves was enhanced after treatment of plant with NaCl, H2O2, Cd2+ and Ni2+ indicating the important role of MnSOD in the resistant mechanism of mangroves.


Assuntos
Avicennia , Metais Pesados , Avicennia/genética , Avicennia/metabolismo , Peróxido de Hidrogênio/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Metais Pesados/análise , Superóxido Dismutase/metabolismo , Peptídeos/metabolismo
3.
Microb Cell Fact ; 22(1): 89, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37131175

RESUMO

BACKGROUND: Aromatic α-hydroxy ketones, such as S-2-hydroxypropiophenone (2-HPP), are highly valuable chiral building blocks useful for the synthesis of various pharmaceuticals and natural products. In the present study, enantioselective synthesis of 2-HPP was investigated by free and immobilized whole cells of Pseudomonas putida ATCC 12633 starting from readily-available aldehyde substrates. Whole resting cells of P. putida, previously grown in a culture medium containing ammonium mandelate, are a source of native benzoylformate decarboxylase (BFD) activity. BFD produced by induced P. putida resting cells is a highly active biocatalyst without any further treatment in comparison with partially purified enzyme preparations. These cells can convert benzaldehyde and acetaldehyde into the acyloin compound 2-HPP by BFD-catalyzed enantioselective cross-coupling reaction. RESULTS: The reaction was carried out in the presence of exogenous benzaldehyde (20 mM) and acetaldehyde (600 mM) as substrates in 6 mL of 200 mM phosphate buffer (pH 7) for 3 h. The optimal biomass concentration was assessed to be 0.006 g dry cell weight (DCW) mL- 1. 2-HPP titer, yield and productivity using the free cells were 1.2 g L- 1, 0.56 g 2-HPP/g benzaldehyde (0.4 mol 2-HPP/mol benzaldehyde), 0.067 g 2-HPP g- 1 DCW h- 1, respectively, under optimized biotransformation conditions (30 °C, 200 rpm). Calcium alginate (CA)-polyvinyl alcohol (PVA)-boric acid (BA)-beads were used for cell entrapment. Encapsulated whole-cells were successfully employed in four consecutive cycles for 2-HPP production under aerobic conditions without any noticeable beads degradation. Moreover, there was no production of benzyl alcohol as an unwanted by-product. CONCLUSIONS: Bioconversion by whole P. putida resting cells is an efficient strategy for the production of 2-HPP and other α-hydroxyketones.


Assuntos
Carboxiliases , Hidroxipropiofenona , Pseudomonas putida , Pseudomonas putida/metabolismo , Carboxiliases/metabolismo , Benzaldeídos/metabolismo , Estereoisomerismo , Cetonas/metabolismo , Acetaldeído/química , Acetaldeído/metabolismo
4.
Biometals ; 36(1): 3-18, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36309886

RESUMO

Metallothioneins (MTs) are metal-binding proteins that have important roles in the homeostasis of heavy metals. In this study, the two MT genes was studied in response to phytohormones using the barley aleurone layer as a kind of model system. The aleurone layer was isolated from barley embryo-less half grains and was incubated for 24 h with different phytohormones. Based on the results the genes encoding HvMT2b2 and HvMT4 were down-regulated through gibberellic acid (GA), while they were and up-regulated through salicylic acid (SA). Despite this, these two genes were differentially expressed to other hormones. Furthermore, the proteins HvMT2b2 and HvMT4 were heterologous expressed as GST-fusion proteins in E. coli. The HvMT4 and HvMT2b2 heterologous expression in E. coli gives rise to 10- and 3-fold improvements in the accumulation capacity for Zn2+, respectively. Whereas the transgenic E. coli strain that expresses HvMT2b2 could accumulate Cd2+ three-fold higher than control. The expression of HvMT4 did not affect the accumulation of Cd2+. HvMT4 which is known as seed-specific isoform seems to be able to bind to Zn2+ with good affinity and cannot bind Cd2+. In comparison, HvMT2b2 was able to bind both Zn2+ and Cd2+. Therefore HvMT4 could serve a noteworthy role in zinc storage in barley seeds. The expression of HvMT4 is induced by SA 30-fold, concerning the untreated aleurone layer. Such results could provide good insights for the assessment of the effects of phytohormones in the molecular mechanism involved in essential metal storage in cereal seeds.


Assuntos
Hordeum , Metais Pesados , Cádmio/farmacologia , Cádmio/metabolismo , Zinco/farmacologia , Zinco/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Hordeum/genética , Hordeum/metabolismo , Metalotioneína/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Metais Pesados/farmacologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
5.
Biometals ; 35(5): 889-901, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35767097

RESUMO

The toxic nature of arsenic has left a trail of disastrous health consequences around the world. Microorganisms have developed various strategies to deal with arsenic. The presence of plasmid and chromosomal ars operons is one of the most important mechanisms for the detoxification of arsenic in bacteria. ArsR is a trans-acting regulatory protein and acts as a repressor on ars operon. The gene encoding ArsR from Corynebacterium glutamicum (CgArsR1) was cloned in expression vectors pET28a. The resulting constructs were transformed into Escherichia coli strains Rosetta (DE3) and Rosetta gami 2. Following the induction with Isopropyl ß-D-1-thiogalactopyranoside, the protein His-CgArsR1 was found in the soluble fraction of strain Rg-CgArsR1. For comparison, ArsR from E. coli was also overexpressed in E. coli (strain Rosetta gami 2) as His-EcArsR. A strain containing empty vector pET28a was also used as a control strain. In the medium containing either arsenite (0.5 mM) or arsenate (0.5 mM), the strain Rg-CgArsR1 and Rg-EcArsR were able to accumulate 1200 and 700 µg/g DCW As3+, respectively. In comparison, the accumulation of As5+ in these strains was 338 and 232 µg/g DCW, respectively. Whereas both strains Rg-CgArsR1 and Rg-EcArsR were able to accumulate higher amounts of As3+ and As5+ with respect to control strain, the accumulation of arsenic in the strain Rg-CgArsR1 was significantly more efficient than strain Rg-EcArsR for removing As3+ and As5+. Based on the results the gene encoding CgArsR1 is a useful and efficient target gene for the modification of bacteria for bioremediation of arsenic from polluted soil and water.


Assuntos
Arsênio , Arsenitos , Corynebacterium glutamicum , Arseniatos , Arsênio/química , Arsenitos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bioacumulação , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Solo , Tiogalactosídeos/metabolismo , Água/metabolismo
6.
Phytochemistry ; 187: 112766, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33878605

RESUMO

Avicennia marina is a widely distributed mangrove species with high tolerance to salt, oxidative stress and heavy metals. In the preset work, we found that superoxide dismutase (SOD) activity increases in Avicennia marina leaves in response to salt and hydrogen peroxide. Monitoring the SOD using Western blot analysis revealed that the accumulation of SOD increased in response to hydrogen peroxide but not in response to salinity stress. Here we also isolated and cloned a gene encoding AmSOD1 which was classified into the group of plant CuZnSODs based on amino acid sequence analysis. AmSOD1 was heterologously expressed in the soluble fraction of E. coli strain Rosetta (DE3). The cells expressing His-AmSOD1 were more tolerant in response to hydrogen peroxide treatment but not salt stress, suggesting the involvement of AmSOD1 in hydrogen peroxide tolerance. The enzyme His-AmSOD1 exhibited a molecular mass of 38 kDa, but it could be monomer in reducing conditions indicating a double-strand protein with intra-molecular disulfide bridge. There are two copper and two zinc moles per mole of dimer form of His-AmSOD1 suggesting the binding of one copper and one zinc ions to each monomer. The Pure His-AmSOD1 was highly active in vitro and its activity was considerably enhanced when the growth medium of the cells producing AmSOD1 was supplemented with Cu2+. The high stability of the recombinant AmSOD1 after incubation in a broad range pH and high temperature is a distinctive feature for AmSOD1, which may open new insights for application of AmSOD1 as a protein drug in different medical purposes.


Assuntos
Avicennia , Cobre , Escherichia coli , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Superóxido Dismutase , Zinco
7.
Comput Biol Chem ; 91: 107435, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33493981

RESUMO

New palladium complexes with general formula trans-[Pd(L)2(OAc)2] (1,2), (L = Benzhydrazide and 2-Furoic hydrazide) have been synthesized and characterized with various methods including elemental analysis, FT-IR, 1HNMR and mass spectroscopy. Afterward their interactions with bovine serum albumin and calf thymus deoxyribonucleic acid have been investigated by UV-vis absorption, fluorescence emission and circular dichroism spectroscopy. Also, site-selective replacement experiments with site probes have been carried out. Analysis of fluorescence spectrum indicated static quenching mechanism. Spectroscopic measurements for DNA binding showed the groove binding to DNA for both complexes. Furthermore, cytotoxicity studies of complexes and cis-platin have been done against colon carcinoma (CT26) and breast cancer (4T1) cell lines. Evaluation of complexes (1) and (2) on induction of apoptosis in CT26 cells has been done. Finally, plasmid cleavage ability of (1) and (2) was investigated by gel electrophoresis that indicate the more activity of (1) than (2).


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/farmacologia , DNA/química , Paládio/química , Plasmídeos , Soroalbumina Bovina/química , Animais , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Simulação de Acoplamento Molecular , Ligação Proteica , Soroalbumina Bovina/metabolismo , Análise Espectral/métodos
8.
Protein Expr Purif ; 175: 105719, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32750405

RESUMO

The simultaneously functions of Metallothioneins (MTs) are relied on their metalation mechanisms that can be divided into non-cooperative, weakly cooperative and strongly cooperative mechanisms. In this study, we recombinantly synthesized OsMTI-1b, N- and C-terminal Cys-rich regions as glutathione-S-transferase (GST)-fusion proteins in E. coli. In comparison with control strains (The E. coli cells containing pET41a without gene), transgenic E. coli cells showed more tolerance against Cd2+ and Zn2+. The recombinant GST-proteins were purified using affinity chromatography. According to in vitro assays, the recombinant proteins showed a higher binding ability to Cd2+ and Zn2+. However, the affinity of apo-proteins to Cu2+ ions were very low. The coordination of Cd2+ ions in OsMTI-1b demonstrates a strongly cooperative mechanism with a priority for the C-terminal Cys-rich region that indicates the detoxifying of heavy metals as main role of P1 subfamily of MTs. While the metalation with Zn2+ conformed to a weakly cooperative mechanism with a specificity to N-terminal Cys-rich region. It implies the specific function of OsMTI-1b is involved in zinc homeostasis. Nevertheless, a non-cooperative metalation mechanism was perceived for Cu2+ that suggests the fully metalation does not occur and OsMTI-1b cannot play a significant role in dealing with Cu2+ ions.


Assuntos
Cádmio/química , Cobre/química , Metalotioneína , Oryza/genética , Proteínas de Plantas , Proteínas Recombinantes de Fusão , Zinco/química , Cromatografia de Afinidade , Escherichia coli/genética , Escherichia coli/metabolismo , Metalotioneína/biossíntese , Metalotioneína/química , Metalotioneína/genética , Metalotioneína/isolamento & purificação , Oryza/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação
9.
Phytochemistry ; 176: 112396, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32353553

RESUMO

Metallothioneins (MTs) are low molecular weight, cysteine-rich, metal-binding proteins that are important for essential metal homeostasis, protection against oxidative stress, and buffering against toxic heavy metals. In this work the gene encoding an MT type 2 from Avicennia marina (Forssk.) Vierh. (AmMT2) was cloned into pET41a and transformed into the Escherichia coli strain Rosetta (DE3). Following the induction with isopropyl ß-D-1-thiogalactopyranoside, AmMT2 was expressed as glutathione-S-transferase (GST)-tagged fusion protein. The accumulation of Zn2+, Cu2+, Fe2+, Ni2+ and Cd2+ for strain R-AmMT2 was 4, 8, 5.4, 2 and 1.6 fold of control strain suggesting the role of AmMT2 in accumulation of metals. Particularly the strain R-AmMT2 was able to accumulate 30.7 mg per g dry weight. The cells expressing AmMT2 was more tolerant to hydrogen peroxide and had higher catalase (CAT) activity. To understand the mechanistic action of AmMT2 hydrogen peroxide tolerance, the activity of CAT in the E. coli protein extract was assayed after addition of pure Fe2+/GST-AmMT complex and Apo/GST-AmMT2 in vitro. Whereas, the activity of CAT did not change by the addition of Apo/GST-AmMT2, the activity of CAT significantly increased after addition of Fe2+/GST-AmMT2. These results show that AmMT2 activates CAT through Fe2+ transfer which subsequently causes the oxidative stress tolerance.


Assuntos
Avicennia , Metais Pesados , Catalase , Escherichia coli , Humanos , Peróxido de Hidrogênio , Ferro , Metalotioneína
10.
Protein Pept Lett ; 27(10): 945-952, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32228415

RESUMO

BACKGROUND: The replacement of carbohydrate sweeteners with protein sweeteners from plants has attracted the interest of researchers because these proteins don't trigger the insulin response and are more nutritive for consumption in food. Brazzein (Braz) is a small and heat- stable sweet protein that has been originally derived from African plant Pentadiplandra brazzeana. In the present work the solubility, sweetness and yield of recombinant forms of Braz in two expression hosts, E. coli and S. cerevisiae were comprised. METHODS: The codon-optimized gene of Braz was cloned in expression vectors pET28a and pET41a and GPD. The resulted vectors pET28a-Braz and pEt41a-Braz were transformed into Escherichia coli strain Rosetta (DE3) and the vector GPD-Braz was transformd to S. cerevisiae. The expression of Braz in different systems was analyzed by SDS-PAGE and western blotting. RESULTS: The results verified the heterologous expression of Braz in S. cerevisiae carrying GPDBraz. Also the expression of Braz as carboxy-terminal extensions of His-tag and Glutathione-STransferase (GST) were verified in transgenic E. coli containing pET28a-Braz and pET41a-Braz, respectively. CONCLUSION: Although the yield of GST-Braz was higher than His-Braz and Braz expressed in S. cerevisiae, but the higher solubility, sweetness, safety (GRAS) are important advantages of the use of S. cerevisiae as expression host for production of Braz. Therefore the result of present work opens new insights for providing the new sweet yeasts that can be used as food additives.


Assuntos
Proteínas de Plantas , Saccharomyces cerevisiae , Expressão Gênica , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
11.
Protein Pept Lett ; 26(10): 768-775, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31618171

RESUMO

INTRODUCTION: Metallothioneins (MTs) are members of a family of low molecular weight and cysteine-rich proteins that are involved in heavy metal homeostasis and detoxification in living organisms. Plants have multiple MT types that are generally divided into four subgroups according to the arrangement of Cys residues. METHODS: In the present study the E. coli cells which heterologously express four different rice MT (OsMT) isoforms were analyzed for the accumulation of two forms of chromium, Cr3+ and Cr6+. RESULTS: The results show that the transgenic bacteria were more tolerant than control cells when they were grown up in the medium comprising Cr(NO3)3.9H2O or Na2CrO4. The cells expressing OsMT1, OsMT2, OsMT3 and OsMT4 give rise to 6.5-, 2.7-, 5.5- and 2.1-fold improvements on the accumulation capacity for Cr3+ and 9-, 3-, 5- and 3- fold Cr6+ respectively compared with comparison to the control strain. Furthermore, the purified recombinant GST-OsMTs were tested for their binding ability to Cr+3 and Cr+6 in vitro. DISCUSSION: The data show that the recombinant GST-OsMT1 and GST-OsMT2 were able to bind both Cr3+ and Cr6+, in vitro. However, their binding strength was low with respect to previous tested divalent ions like Cd2+.


Assuntos
Cromo/química , Metalotioneína/química , Oryza/química , Proteínas de Plantas/química , Proteínas Recombinantes/química , Sequência de Aminoácidos , Cátions/química , Cisteína/química , Escherichia coli/genética , Concentração de Íons de Hidrogênio , Metalotioneína/genética , Proteínas de Plantas/genética , Ligação Proteica , Isoformas de Proteínas , Proteínas Recombinantes/genética
12.
Appl Biochem Biotechnol ; 187(2): 649-661, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30030721

RESUMO

ß-Lactoglobulin (BLG), a member of lipocalin family, is one of the major bovine milk allergens. This protein exists as a dimer of two identical subunits and contains two intramolecular disulfide bonds that are responsible for its resistance to trypsin digestion and allergenicity. This study aimed to evaluate the effect of reduction of disulfide bonds of BLG with different rice thioredoxins (Trxs) on its digestibility and allergenicity. Therefore, the active recombinant forms of three rice Trx isoforms (OsTrx1, OsTrx20, and OsTrx23) and one rice NADPH-dependent Trx reductase isoform (OsNTRB) were expressed in Escherichia coli. Based on SDS-PAGE, HPLC analysis, and competitive ELISA, the reduction of disulfide bonds of BLG with OsNTRB/OsTrx23, OsNTRB/OsTrx1, GSH/OsTrx1, or GSH/OsTrx20 increased its trypsin digestibility and reduced its immunoreactivity. The finding of this study opens new insights for application of plant Trxs in the improvement of food protein digestibility. Especially, the use of OsTrx20 and OsTrx1 are more cost-effective than E. coli and animal Trxs due to their reduction by GSH and no need to NADPH and Trx reductase as mediator enzyme.


Assuntos
Glutationa/química , Lactoglobulinas/química , Oryza/genética , Proteínas de Plantas/química , Tiorredoxina Dissulfeto Redutase/química , Tiorredoxinas/química , Escherichia coli/genética , Escherichia coli/metabolismo , Oryza/enzimologia , Proteínas de Plantas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxinas/genética
13.
Protein Pept Lett ; 26(3): 176-183, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30430933

RESUMO

BACKGROUND: Acetohydroxyacid Synthase (AHAS) is the first enzyme in the biosynthesis pathway of the branched chain amino acids. AHAS is the common target site of five herbicide chemical groups: sulfonylurea, imidazolinone, triazolopyrimidine, pyrimidinyl-thiobenzoates, and sulfonyl-aminocarbonyl-triazolinone. OBJECTIVE: The purification of protein enabled us to study the physical and biochemical properties of the enzyme. In addition in vitro activity of this enzyme was tested in the presence of four different sulfonylureaherbicides and the feedback regulation of enzyme was analyzed in the presence of branched amino acids. METHODS: The gene encoding catalytic subunit of rice AHAS (cOsAHAS) without part of the chloroplast transit sequence was cloned into the bacterial expression vector pET41a and heterologously expressed in Escherichia coli as carboxy-terminal extensions of glutathione-S-transferase (GST).The soluble protein was purified using affinity chromatography. The measurement of GSTOsAHAS activity was performed under optimized conditions at present of branched-chain amino acids and sulfonylurea herbicides independently. RESULTS: The optimum pH and temperature for GST-cOsAHAS activity was 8.0 and 37 °C, respectively. The specific activity and Km value of this enzyme toward pyruvate were 0.08 U/mg and 30 mM, respectively.GST-cOsAHAS was inhibited by herbicides tribenuron, sulfosulfuron, nicosulfuron and bensulfuron while the enzyme was insensitivieto end products. CONCLUSION: These results suggest that the recombinant form of GST-cOsAHAS is functionally active and carries the binding site for sulfynylurea herbicides. Furthermore, GST-cOsAHAS was insensitive to feedback inhibition by endproducts which indicates the existence of a regulator subunit in rice AHAS as previously has been described in other plant AHASs.


Assuntos
Aciltransferases , Domínio Catalítico , Escherichia coli , Expressão Gênica , Oryza , Proteínas de Plantas , Aciltransferases/biossíntese , Aciltransferases/química , Aciltransferases/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Oryza/enzimologia , Oryza/genética , Proteínas de Plantas/biossíntese , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
14.
Curr Microbiol ; 75(11): 1537-1542, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30151557

RESUMO

Metallothioneins (MTs) are low-molecular weight cysteine (Cys)-rich proteins with high metal-binding capacity. Based on the Cys arrangement in their amino acid sequences, plant MTs are categorized into four classes. This study evaluated the ability of genetically engineered Escherichia coli cells, which express four rice MT isoforms as fusion proteins with glutathione-S-transferase (GST), to remove arsenic. As compared with control strain, the expression of GST-OsMT1, GST-OsMT2, GST-OsMT3, and GST-OsMT4 resulted in 8-, 5.6-, 3-, and 1.1-fold-higher As3+ accumulation. The recombinant GST-OsMT isoforms were purified using affinity chromatography and their apo-forms were prepared. The ability of the GST-OsMT2 isoform to bind with As3+ in vitro was also confirmed by ultraviolet (UV) absorption spectra recorded after the reconstitution of apo-proteins with As3+. However, the formation of complexes of other MT isoforms with arsenic was not observed.


Assuntos
Arsênio/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Metalotioneína/genética , Oryza/genética , Proteínas de Plantas/genética , Engenharia Genética , Metalotioneína/metabolismo , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
15.
Braz. j. microbiol ; 48(3): 537-543, July-Sept. 2017. graf
Artigo em Inglês | LILACS | ID: biblio-889126

RESUMO

Abstract Metallothioneins are a superfamily of low-molecular-weight, cysteine (Cys)-rich proteins that are believed to play important roles in protection against metal toxicity and oxidative stress. The main purpose of this study was to investigate the effect of heterologous expression of a rice metallothionein isoform (OsMTI-1b) on the tolerance of Saccharomyces cerevisiae to Cd2+, H2O2 and ethanol stress. The gene encoding OsMTI-1b was cloned into p426GPD as a yeast expression vector. The new construct was transformed to competent cells of S. cerevisiae. After verification of heterologous expression of OsMTI-1b, the new strain and control were grown under stress conditions. In comparison to control strain, the transformed S. cerevisiae cells expressing OsMTI-1b showed more tolerance to Cd2+ and accumulated more Cd2+ ions when they were grown in the medium containing CdCl2. In addition, the heterologous expression of GST-OsMTI-1b conferred H2O2 and ethanol tolerance to S. cerevisiae cells. The results indicate that heterologous expression of plant MT isoforms can enhance the tolerance of S. cerevisiae to multiple stresses.


Assuntos
Proteínas de Plantas/genética , Oryza/genética , Saccharomyces cerevisiae/metabolismo , Cádmio/metabolismo , Expressão Gênica , Etanol/metabolismo , Peróxido de Hidrogênio/metabolismo , Metalotioneína/genética , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/genética , Estresse Oxidativo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Metalotioneína/metabolismo
16.
Mol Biol Res Commun ; 6(1): 33-40, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28447047

RESUMO

Thioredoxins (Trxs) are small ubiquitous oxidoreductase proteins with two redox-active Cys residues in a conserved active site (WCG/PPC) that regulate numerous target proteins via thiol/disulfide exchanges in the cells of prokaryotes and eukaryotes. The isoforms OsTrx23 with a typical active site (WCGPC) and OsTrx20 with an atypical active site (WCTPC) are two Trx h- type isoforms in rice that were previously found to be reduced by NADPH-dependent thioredoxin reductase and GSH/Grx system, respectively. In the present work the reduction of mutants G41TOsTrx23, T55GOsTrx20, K48DOsTrx20 and T55G-K48D OsTrx20 as well as wild types OsTrx23 and OsTrx20 were tested in the reaction containing either NADPH/NTR or glutathione (GSH). The results revealed that reduction rate of T55GOsTrx20 was remarkably decreased by GSH as compared to WtOsTrx20 highlighting the critical role of Thr-55 in interaction of OsTrx20 with GSH. On the other hand a significant decrease in the reduction rate of G41TOsTrx23 was observed in reaction containing NADPH-dependent thioredoxin reductase as compared with readuction rate of WtOsTrx23. These results suggest that first residue after N-terminal active site Cys is one of the critical residue in determination of system that Trxs can be reduced in.

17.
Braz J Microbiol ; 48(3): 537-543, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28223030

RESUMO

Metallothioneins are a superfamily of low-molecular-weight, cysteine (Cys)-rich proteins that are believed to play important roles in protection against metal toxicity and oxidative stress. The main purpose of this study was to investigate the effect of heterologous expression of a rice metallothionein isoform (OsMTI-1b) on the tolerance of Saccharomyces cerevisiae to Cd2+, H2O2 and ethanol stress. The gene encoding OsMTI-1b was cloned into p426GPD as a yeast expression vector. The new construct was transformed to competent cells of S. cerevisiae. After verification of heterologous expression of OsMTI-1b, the new strain and control were grown under stress conditions. In comparison to control strain, the transformed S. cerevisiae cells expressing OsMTI-1b showed more tolerance to Cd2+ and accumulated more Cd2+ ions when they were grown in the medium containing CdCl2. In addition, the heterologous expression of GST-OsMTI-1b conferred H2O2 and ethanol tolerance to S. cerevisiae cells. The results indicate that heterologous expression of plant MT isoforms can enhance the tolerance of S. cerevisiae to multiple stresses.


Assuntos
Cádmio/metabolismo , Etanol/metabolismo , Expressão Gênica , Peróxido de Hidrogênio/metabolismo , Metalotioneína/genética , Oryza/genética , Proteínas de Plantas/genética , Saccharomyces cerevisiae/metabolismo , Metalotioneína/metabolismo , Estresse Oxidativo , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Saccharomyces cerevisiae/genética
18.
Int J Biol Macromol ; 96: 436-441, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28013008

RESUMO

In this study we examined the independent self assembly of metal-binding in C-terminal Cys- rich region of a type 1 metallothionein (MT) isoform from rice (OsMTI-1b). To this end the N-terminal of OsMTI-1b (C-OsMTI-1b) was heterologously expressed in Escherichia coli as fusion protein with glutathione-S-transferase (GST). As compared with control (The E. coli cells containing pET41a without gene), transgenic E. coli cells expressing GST-C-OsMTI-1b accumulated more Ni2+, Cd2+, and Zn2+ from culture medium and showed increased tolerance against these metals. The recombinant GST-C-OsMTI-1b was purified using affinity chromatography. According to in vitro assays the protein GST-C-OsMTI-1b was able to form complexes with Ni2+, Cd2+ and Zn2+. These results demonstrate the formation of independent metal-thiolate cluster at C-terminal Cys-rich region of OsMTI-1b without participation of N-terminal Cys-rich region.


Assuntos
Cisteína , Metalotioneína/química , Compostos Organometálicos/química , Oryza , Proteínas de Plantas/química , Sequência de Aminoácidos , Clonagem Molecular , Metalotioneína/genética , Mutação , Estabilidade Proteica
19.
Protein Pept Lett ; 23(7): 639-44, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27165409

RESUMO

The members of plant metallothionein (MT) subfamily p1 are characterized with the presence of six Cys at each end of N- and C-terminal of their amino acid sequences which are arranged in a CXCXXXCXCXXXCXC and CXCXXXCXCXXCXC sequence, respectively. In this study we evaluated the independence of N-terminal Cys-rich region of a type 1 MT isoform from rice (OsMTI- 1b) in forming metal-thiolate cluster. To this end the N-terminal of OsMTI-1b (N-OsMTI-1b) was heterologously expressed in Escherichia coli as fusion protein with glutathione-S-transferase (GST). The E.coli cells expressing GST-N-OsMTI-1b were able to remove Cd2+ and Ni2+ from culture medium. The recombinant GST-N-OsMTI-1b was purified using affinity chromatography. The UV absorption spectra recorded after the reconstitution of the apo-protein with Cd2+ and Ni2+ confirmed that GST-N-OsMTI-1b was able to form complexes with Cd2+ and Ni2+. These results demonstrate the formation of independent metal-thiolate cluster at Nterminal Cys-rich region of GST-N-OsMTI-1b without participation of C-terminal Cys-rich region.


Assuntos
Cádmio/química , Metalotioneína/química , Níquel/química , Oryza/química , Proteínas de Plantas/química , Sequência de Aminoácidos , Cromatografia de Afinidade , Expressão Gênica , Glutationa Transferase/química , Glutationa Transferase/genética , Metalotioneína/genética , Mutação , Oryza/genética , Proteínas de Plantas/genética , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética
20.
Int J Biol Macromol ; 88: 491-6, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27079330

RESUMO

Metallothioneins (MTs) are a family of Cys-rich, low molecular weight, cytoplasmic metal binding proteins. MTs are present in all eukaryotes as well as some prokaryotes. Plant MTs are divided into four types based on Cys distribution pattern in their amino acid sequences. In the present work, the gene encoding OsMTI-2b, a type 2 MT found in rice, was cloned into pET41a vector. The resulting construct was transformed into Escherichia coli strain Rosetta (DE3). Following the induction with Isopropyl ß-d-1-thiogalactopyranoside the OsMTI-2b was expressed as carboxyl-terminal extensions of glutathione-S-transferase (GST-tag), a 6His-tag, and an S-tag. The expressed recombinant fusion protein was named GST-OsMTI-2b. As compared with control, transgenic E. coli cells expressing GST-OsMTI-2b accumulated more Pb(2+), Ni(2+), Cd(2+), Zn(2+) and Cu(2+) from culture medium and showed increased tolerance against these metals. Furthermore the E. coli cells expressing OsMTI-2b accumulated significantly higher Pb(2+) than previously made strains which expressing other rice OsMT isoforms. The recombinant GST-OsMTI-2b was purified using affinity chromatography. According to in vitro assays the protein GST-OsMTI-2b was able to form complexes with Pb(2+), Ni(2+), Cd(2+) and Zn(2+). However, the binding ability for the different metals differed in the order: Pb(2+)>Cd(2+)>Zn(2+)>Ni(2+).


Assuntos
Escherichia coli/genética , Metalotioneína/biossíntese , Isoformas de Proteínas/biossíntese , Proteínas Recombinantes de Fusão/biossíntese , Cádmio/toxicidade , Cobre/toxicidade , Escherichia coli/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Chumbo/toxicidade , Metalotioneína/genética , Metalotioneína/isolamento & purificação , Níquel/toxicidade , Oryza/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/isolamento & purificação , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Zinco/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...